Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50 Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6422 -
📌Какой вектор лучше: Dense vs Multi-vector embeddings
Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.
📍Dense-векторы (single vector per doc): — быстрые — экономные по памяти — слабо улавливают контекст — «плавают» при сложных запросах 👉 подходят для простого поиска
📍Multi-vector (late interaction): — вектор на каждый токен — сравниваются токены запроса и документа напрямую — лучше качество на сложных задачах — выше требования к хранилищу 👉 баланс между скоростью и точностью
📍Late interaction ≈ золотая середина: — быстрее, чем cross-encoders — точнее, чем dense-векторы
📍Примеры моделей: — ColBERT — для текстов — ColPali — multimodal: текст + PDF как картинки — ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)
Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.
📌Какой вектор лучше: Dense vs Multi-vector embeddings
Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.
📍Dense-векторы (single vector per doc): — быстрые — экономные по памяти — слабо улавливают контекст — «плавают» при сложных запросах 👉 подходят для простого поиска
📍Multi-vector (late interaction): — вектор на каждый токен — сравниваются токены запроса и документа напрямую — лучше качество на сложных задачах — выше требования к хранилищу 👉 баланс между скоростью и точностью
📍Late interaction ≈ золотая середина: — быстрее, чем cross-encoders — точнее, чем dense-векторы
📍Примеры моделей: — ColBERT — для текстов — ColPali — multimodal: текст + PDF как картинки — ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)
Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.
Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.
The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from de